Directed Ramsey number for trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Directed Ramsey number for trees

In this paper, we study Ramsey-type problems for directed graphs. We first consider the k-colour oriented Ramsey number of H, denoted by − →r (H, k), which is the least n for which every k-edgecoloured tournament on n vertices contains a monochromatic copy of H. We prove that − →r (T, k) ≤ ck|T |k for any oriented tree T . This is a generalisation of a similar result for directed paths by Chvát...

متن کامل

The tripartite Ramsey number for trees

We prove that for every ε > 0 there are α > 0 and n0 ∈ N such that for all n ≥ n0 the following holds. For any two-colouring of the edges of Kn,n,n one colour contains copies of all trees T of order k ≤ (3− ε)n/2 and with maximum degree ∆(T ) ≤ n. This answers a conjecture of Schelp.

متن کامل

The size-Ramsey number of trees

Given a graph G, the size-Ramsey number r̂(G) is the minimum number m for which there exists a graph F on m edges such that any two-coloring of the edges of F admits a monochromatic copy of G. In 1983, J. Beck introduced an invariant β(·) for trees and showed that r̂(T ) = Ω(β(T )). Moreover he conjectured that r̂(T ) = Θ(β(T )). We settle this conjecture by providing a family of graphs and an emb...

متن کامل

The Size-Ramsey Number of Trees

If G and H are graphs, let us write G → (H)2 if G contains a monochromatic copy ofH in any 2-colouring of the edges of G. The size-Ramsey number re(H) of a graph H is the smallest possible number of edges a graph G may have if G→ (H)2. Suppose T is a tree of order |T | ≥ 2, and let t0, t1 be the cardinalities of the vertex classes of T as a bipartite graph, and let ∆(T ) be the maximal degree o...

متن کامل

Ramsey numbers for trees

For n ≥ 5 let T ′ n denote the unique tree on n vertices with ∆(T ′ n) = n − 2, and let T ∗ n = (V, E) be the tree on n vertices with V = {v0, v1, . . . , vn−1} and E = {v0v1, . . . , v0vn−3, vn−3vn−2, vn−2vn−1}. In this paper we evaluate the Ramsey numbers r(Gm, T ′ n) and r(Gm, T ∗ n), where Gm is a connected graph of order m. As examples, for n ≥ 8 we have r(T ′ n, T ∗ n) = r(T ∗ n , T ∗ n) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2019

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2018.12.006